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Received 28 November 1975, in final form 11 February 1976 

Abstract, The renormalization prescription of t'Hooft and Veltman is used to construct 
crossover scaling functions for the susceptibility and free energy in an isotropic n vector 
model. Some dilliculties in interpreting the E expansion in this context are discussed, and 
the formalism is illustrated by a calculation of the expansion factor a' of a polymer in dilute 
solution. 

1. IntrQduCtion 

An aspect of the renormalization group approach to critical phenomena which is 
currently receiving much attention is the problem of the crossover behaviour of 
thermodynamic functions between regions in which they exhibit the simple kinds of 
behaviour generated by different fixed points of the renormalization group transforma- 
tion. In this article, we study a simple crossover problem, namely the dependence of the 
correlation functions in 94 theory on the scaling variable z - go7-E'2, where go is the 
four-spin coupling constant, T the reduced temperature and d = 4 - E  the dimensional- 
ity of space. For large z, the theory is dominated by the critical behaviour generated by 
the Wilson-Fisher fixed point, and the susceptibility, for example, diverges as 

/y - r-' (1.1) 

where y is the well known critical exponent. When z is small, the tricritical behaviour, 
governed by the mean-field exponents emerges, and one fmds that 

/y - 7-I. (1.2) 

The essence of the problem is to discover a scaling function, X(z ) ,  such that 

/y = 7-'x(z) (1.3) 

reproduces the simple forms (1.1) and (1.2) in the appropriate limits, and correctly 
describes the susceptibility for general values of z. ~ / 2  is the crossover exponent for this 
problem (Riedel and Wegner 1969, 1970). 

B&in et a1 (1973a) have examined the critical region in considerable detail, using 
the Cdlan-Symanzik equations in renormalized perturbation theory, and the present 
investigation uses a related renormalization procedure, due to t'Hooft and Veltman 
(1972) (see also t'Hooft 1973, Collins and Madarlane 1974), which offers several useful 
features. The re"alization group equation resulting from this procedure is 
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homogeneous in the correlation function (i.e. it does not involve the correlation 
function with an extra cP2 insertion) at all momenta, and the mass”psmeter is 
multiplicatively renormalized, which has the consequence that both the bare and the 
renormalized masses are proportional to the reduced te in the case of a 
magnetic system. Thus the critical value, m&, of the mass is zero, indepen- 
dently of the value of go. The two independent parameters in the Lagrangian (2.1) can 
therefore be taken to be T = mi and the dimensionless Z, and dimensional 
analysis now shows that (1.3) is the only possible form susceptibility. This 
somewhat unusual feature appears to stem from the fact that certain divergent 
contributions to the Feynman integrals are neglected in the dimensional regularization 
procedure. If a b i t e  momentum cut-off were to be used, an additive renormalization 
would also be required. In fact, a homogeneous renormalization group equation due to 
Weinberg (1973) has already been used (Zinn-Justin 1973). but the present technique 
seem to be calculationally simpler. 

As this renormalization procedure has not, to the author’s knowledge, been used 
previously in the study of critical phenomena, we give in 4 2 a summary of the method, 
and indicate how the critical exponents and scaling laws can be obtained directly from 
the definitions of the thermodynamic functions. In 3 3 we calculate, to order E ,  the 
mossover scaling functions for the free energy and the susceptibility, and it will be seen 
that the extension to higher orders is a matter only of labour. We note, however, that 
there are difficulties in interpreting the E expansion result outside the critical region. In 
0 4, we illustrate the formalism by calculating the expansion factor a2 of a polymer in 
dilute solution. This problem has recently been studied by Burch and Moore (1976) 
who have calculated polymer properties using the essentially phenomenological 
approach of Riedel and Wegner (1974) to crossover problems. We have not obtained a 
closer fit to the data than theirs, but we find a marked improvement between the fist 
two orders of the e expansion. 

2. Benormalization group equation 

We consider the traditional model of an n component scalar field theory defined, in 
terms of unrenormalized quantities, by the Lagrangian density: 

(2.1) 

where 4: stands for 2:=, &&. The renormalization procedure involves defining the 
following renormalized quantities: 

4 4 x 1  = ~ 5 ’ ” 9 O ( X )  
m2= z-,’m; 

Here F is an arbitrary parameter, with the dimensions of mass, which means that the 
~ ~ ~ o r m a l i z e d  coupling constant U is dimensionless. It is possible to show that the 
~ a m ” m m l i o n  constants Z1, & , Z ,  are given by the procedure we shall describe as 
functions of U alone. In fact they are power series in U, whose first terms are Unity, and 
they are infinite in four dimensions. 
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In terms of the renormalized quantities, the Lagrangian reads 

2=2()+2?1 

- 9 0  = 4 (V+)' +4 m 2 f g  

SaIa,Sa,, . . . Sas-,as +permutations 
1.3.5.. . (s-1) Q ( S ) ( X 1  . . . x,) = (+a l (x l )  . . . +"'(xS))c 

are calculated in perturbation theory with the Feynman rules obtained from (2.2) in the 
usual way. The one-particle-irreducible vertex functions, obtained from the G('' by 
deleting all graphs which can be disconnected by cutting a single line; and removing 
from those which remain the propagators associated with external legs, are denoted, in 
momentum space, by p'"' (pl . . . ps ; U, m, p). By convention, the leading term ofr"' (p') 
is -(p'+m'), which makes I"') equal to minus the inverse propagator: 

F2'(p2) = -[G"'(p')]-'. (2.3) 
The crux of.the renormalization prescription is to define Z1, 2, and 2, so as to make 
the three quantities 

a 
ap =o 

F2'(p2 = O), 71 , r'2'(p2) and P4'(pi =0) 

finite in four dimensions, to all orders in perturbation theory. Using the technique of 
dimensional regularization, we can cast the Feynman integrals into a form in which their 
divergences appear as poles at E = 0, and the prescription offered by t'Hooft and 
Veltman is to subtract just these poles, together with their residues at E = 0. Explicitly, 
figure 1 shows the diagrams contributing to r"' to first order in U. The integra! A is 

kd-'(k2+m2)-ldk 

= isd ( m')""'B ( ~ / 2  - 1,2 - ~ / 2 )  = -s4m2E-'( 1 O(E)) 

where 

= ( 2 5 ~ ) - ~  x (surface of a d dimensional sphere). 
25Td/2 

S -  
- ( 2 ~ ) ~ r ( d / 2 )  

Evaluating the vertex function at p = 0, we require the first counterterm just to cancel 
the pole contained in A. That is 

Figure 1. Diagrams contributing to I?')($) to order ( U ) .  



964 ID Lawrie 

On differentiating with respect to p 2 ,  since the one-loop diagram is independent & p, 
the second counterterm is zero to this order, i.e. 

&= 1 + 0 ( U 2 ) .  

A similar condition on F4’(p, = 0) enables us to evaluate 21, and the extension of 
procedure to higher orders is obvious. The results to order U’ are: 

n + 8  1 Z1 = l + - S 4 ~ + - [ ( n + 8 ) ~ - ( 5 n + 2 2 ) ~ ] ( S ~ ~ ) ~ + O ( u ~ )  
6~ 3 6 ~ ’  

The counterterms generated by this procedure are sufficient to define finite correla- 
for all s. However, we also need to consider matrix elements tion functions ds) and 

of the form 

(+’(~1> - . . 9 ’ ( X r ) # ( Y J  * . * #(~s)> 

in which new divergences appear. In order to obtain finite correlation functions, 
G“”), r(r,s) of this type, we introduce an extra wavefunction renormalization Z., and 
define &(x)  = Z4G1&(x)  = Z,C$~(X). Now the unrenormalized vertex functions, 
E), associated with the matrix elements of + o ( ~ )  satisfy 

rt) = z d 2 r ( s )  

and 

Thus 

is finite at E = O  if Z4=Z32,,,, which is also found by explicit calculation. The 
renormalized vertex functions, r(r,s) are those associated with the matrix elements Of 
9& and 9. 

The scaling properties of the correlation functions are investigated by use of the 
renormalization group equation, which is an expression of the fact that the unrenor- 
malized functions are independent of the parameter ,U. Making the functional depen- 
dences explicit, we have 

r Y p i ;  U, m, ,U) = z~”( (u>z~(u)r l”s ’ (p i ;  go, mo) 

and on differentiating with respect to p, at fixed go and mo, we get 
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where 

a d n+2 
y3(u) = p-In &= p(u)-In =- ( s ,u )~+o(u~) .  

ap du 72 
Clearly, these functions are closely related to the Callan-Symanzik functions obtained 
by Br6zin et aZ(1973a), and here also, it appears that, at least in perturbation theory, fi 
has a zero of order e, given by 

n+8 

and has the general form indicated in figure 2. 

I 
Fignre 2. Sketch of @(U). 

Equation (2.4) may be written more conveniently in terms of the following variables 

v ( ~ )  = (2+ y m ( U ) ) - l  = v(u)B(u) t = m 2 / p 2  

i.e. 

(2.8a) 

( 2 . 9 ~ )  
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or equivalently by the differential equations 

t2ii = B(E); E(?= 1)= U 
at (2.8b) 

a -  
t z p  = v(P)P; P ( f = l ) = p .  (2.9b) 

In the region of interest, U S U", V(U) is positive, and B(u)  has the samegeneralfomas 
p(u). Thus (2.8) and (2.9) imply that in the limit t + 0, 

E ( t )  =U* 

P(t) - t u  

where the critical exponent v = v( U") has exactly the value calculated by other methods. 
Since p is the only dimensional parameter, aside from momenta, it is straightfor- 

ward to see from (2.7) that the correlation length, 8, defined by 

P ( p 2  = -.$-*; C(t) ,  1, P(t)) = 0 

.$ = [pu( t)]-'f( U*) - t-. 
has the form, near t = 0, 

Therefore, if, as is often done, mi is taken to be linear in temperature, and go to be 
temperature-independent, the critical point, defined by the divergence of 6, is at t = 0, 
so t, and therefore mi are proportional to the reduced temperature, (T-TJ/)/T,. 
Similarly, one can derive from (2.7) the critical behaviour of the susceptibility: 

x-l = r(2)(p2 = 0) - t-yg(t)j2 - t Y  

where 7 = y3(u*) and y = (2 - 7)v in accordance with the usual scaling laws. 
The specific heat is proportional to T'2'o'(pl = p2  = 0), which is not multiplicatively 

renormalizable. However, if one assumes that it satisfies (2.7), its behaviour in the 
critical region is found to be 

c- t-" 
with CY = 2 -dv, which again agrees with the Widom-Kadanoff scaling laws. 

higher order values, the reader is referred to Brkzin et a1 (1973b): 
Finally in this section we quote the results, to order E' for the critical exponents. For 

€+-- (n + 2 3 n + 60)~ '  + O( E ')) 
l n + 2  1 n + 2  :( 2 n + 8  4 ( n + 8 )  

v = -  I+--  

1 n + 2  2 + 0 ( ~ ~ )  =.2 
(n2+22n +52)e2+ 0(e3) .  y=l+--€+--  

l n + 2  1 n + 2  
2 n + 8  4 ( n + 8 )  

3. Crossover scaling functions 

In the last section, we obtained the well known E expansion expressions for the $tical 
exponents from the zero-mass behaviour of the renormalized correlation functions, 



Gaussian-Heisenberg crossover behaviour 967 

which are expressed in terms of the renormalized parameters, U, t and p .  However, we 
are now interested in the behaviour of the theory in terms of mo and go, which define the 
model, for general values of these parameters, and the physical quantities we wish 
ultimately to calculate are related to the matrix elements of the unrenormalized field 
In the renormalized theory, as long as U (or 13) is of order E,  the E expansion coincides 
with the perturbation expansion in powers of U,  which enabled us to calculate the critical 
exponents as power series in E. In the perturbation expansion of the renormahtion 
constants, however, the coefficient of us is of order ( 1 / ~ ) ~ ,  so that the transition back to 
the unrenormalized theory is not quite straightforward, if we still wish to use the E 

expansion. 
In order to make this transition, we go back to equations (2.5) which are the 

analogue in our procedure of the differential recursion relations used in previous 
investigations (Riedel and Wegner 1974, Nelson and Rudnick 1975). Figure 2 shows 
that in the limit j~ -* CO, U + 0, and the Z become equal to unity, as long as U is between 
0 and U* for finite p, which we assume to be the case. We now write U = uu*, and find 
that 

( P ( U ) / U * )  = -Ev(1 -u)F(v)  (3.1) 
where F(v)  is a power series in which the coefficient of us is of order E’ and 

3(3n + 14) 2 E + O ( E 3 ) .  & ( I )  = @‘(U*) = 0 = E 1 - ( ( n + 8 )  

Now integrating (2.5) we have 

In p-‘ = 1 dv(l+*+O(E’v)) v ( 1 - v )  (3.2) 

or 
€ / U  O(.*U2) 

,U-‘ =constant u(1 -  v)- e 

and with the boundary condition limv+o vp‘ = go/u*, we can evaluate the constant of 
integration to give 

P-Egolu* = g v ( l  - eO(a2u*)= 

or 

?)=- I-- In(1 f g) (3n + 14) 
1:A l+g * ( n + 8 )  

Thus, by ignoring the fact that p%* is itself a function of E,  we have found an expression 
for u in terms of go in the form of an E expansion. Note that g vanishes in the limit 
CL + W. It is perhaps worth remarking that in (3.2) the term involving the exponent E / @  

occurs in exactly the form given, because of the definition w = P’(u*) .  Of course if one 
wishes to evaluate w to order e3 or beyond, the terms denoted 0 ( e 2 v )  must be 
calculated to the same order. 

Equation (2.8) may be integrated in the same manner, with C=tiu* and 
B’(u*) = wv. In this case, we treat tE’2 as if it were independent of E,  and obtain 

t-J2 = cfi(l - 5 ) - f / 2 0 Y  eo(€zBz) (3.3) 
where 
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-2 2 In the limit p + CO, t = p mo, and 

ct'l2 = u*mz/go. 

Equation (3.3) shows explicitly how the theory is dominated by the two fixed points 
5 = 0 (Gaussian) and 5 = 1 (Wilson-Fisher) in the limiting cases of the dimensionless 
ratio go/& becoming respectively small or large, with the leading corrections to scaling 
governed by the exponents ~ / 2  or wv (cf BrCzin er u1 1973a). 

6, and (by integrating (2.9)) ii may now be expressed in the form of an E expansion, 
as functions of the scaling variable z = go/u*m6 where, again, the E dependence ofthis 
variable is ignored. Since we have identified the reduced temperature as mi, we change 
to the more suggestive notation, 7 = mi. The results, in the limit p + CO, are 

Z -n2+8n+68 In(l+z) 
5 ( z )  = - (1 - E-+O@)) 

l + z  2(n +8)2 l t z  (3.4) 

Z 
(3.5) (1 3 n + 44) E- + O( E')) 

n+2  
(4(n +8)3 l + z  

x exp 

The susceptibility, ,y = [I"2'(p2 = 0)l-I can now be evaluated from (2.7) and is given 
by 

= 7-1(1 + Z)(2/~){y-1+[In+2)/4(n+8)3l(--n2+8n+68)s2(1+z)-~+O(s3)} 

We can also find an expression for the free energy functional which is, apart from a 
singular, spin independent term, 

" 1  
s=2 s. T(M, U, t, = 1 , M ' P ( p i  = 0; U ,  t, p) 

r = ,E'F(~, ii) (3.8) 
where Ma = (4") is a constant magnetization. (2.7) may be used to write this in the form 

2 -26 where y =Mi@2-dK(z).  Near 7=0,  y -M 7 ,with p =$v(d-2  f v), as expected, 
and the expansion of F(y, 6) in powers of z2 corresponds to the loopwise expansion 
(Zinn-Justin 1973). To one-loop order, the result is 

+ 1+-y In 1+-y -- +(1-yE+ln4r)(n+2) ( ; ( ; :1 
(3.9) 

At this point, some comments about the form of these results are appropriate. 
Firstly, we point out that the correlation functions calculated by this method may be 
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expanded in powers of z, and upon re-expressing them in terms of go and m, we remver 
the expressions obtained from the unrenormalized perturbation expansion, correct to 
the appropriate order in E. However, the forms given in (3.4)-(3.9) evidently contin 
more information than the unrenormalized theory, since the coefficient of each power 
of E is an exact function of z :  no assumption has been made about the magnitudes of go 
and mo, although by working without a finite momentum cut-off, we have implicitly 
restricted ourselves to a region in which the lattice spacing or corresponding quantity 
can properly be neglected. Secondly, the fact that the only ‘small’ parameter appearing 
explicitly is E, leads to certain ambiguities of interpretation. When one is dcda t ing  
only a single number, such as a critical exponent, the situation is clear: whether the E 

expansion converges or not, one obtains a result which can be compared directly with 
experiment at each order of approximation. To determine the functional form of the 
thermodynamic functions in go and mo, or whatever parameters one starts with, is a 
somewhat different problem, and in order to make sensible use of the E expansion, one 
needs some other guide as to what‘ functional form to expect, just as in the critical region 
one assumes simple scaling behaviour as some power of r. The scaling variable L seems 
to arise naturally from the formalism, and one obviously wishes to avoid expanding 8‘ 
in powers of logarithms, but faced with an expression such as (3.7), it is not obvious that 
one should not, fgr example, expand in powers of ln(1 +z),  keepingonly the O(E’) term 
in the exponent. The form given seems to be instructive, in that the simple power law 
behaviour in the limits of large or small z is readily apparent. 

We note, in this connection, that in the limit E + 0, the well known logarithmic 
corrections are absent from our result. The reason for this is that the limits E + 0 and 
p + CO do not commute. Thus the form of E expansion we have used is not appropriate 
for studying the four-dimensional limit of the theory. To lowest order, the susceptibility 
is 

which may be compared with the result of Nelson and Rudnick (1975) 

(3.10) 

(3.11) 

This result, in which the logarithmic correction is reproduced, can, in fact, be obtained 
from the present method by setting p = 1, and expandinginpowersof go/u*. However, 
since U” is of order E,  this variable is of order E - ~ ,  or of order unity, if go is taken to be a 
multiple of U*, and such a procedure does not give rise to an E expansion. 

The simplest way of illustrating our form for the susceptibility is to evaluate the 
effective exponent (Fedel and Wegner 1974) 

and in figure 3 we draw this quantity to order E and E’, with n = d = 3 and go/u* = 1. 
We note that by setting go/u* =$in (3.11), we obtain the same  ye^ as from (3.10). 

The expressions we have obtained in this section are open to criticism, on the 
grounds that, while (3.3) manifestly has the correct analytic structure for all f, this does 
not appear explicitly in the final solutions. Although it is not difficult to obtain from 
them, by logarithmic differentiation, the corrections to scaling near the Heisenberg 
fixed point in powers Qf r”’, the scaling variable appropriae to this region is not, strictly 
speaking, z, but z - ~ ~ ’ ” ‘ .  Clearly, it is not possible to exhibit within a single expression 
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Figure 3. Plot of yea with n = d = 3 to first (broken curve) and second (full curve) orders 
in e. 

the correct analytic structure near both fixed points, although a parametric representa- 
tion can achieve this (Bruce and Wallace 1976). Nevertheless, our expressions are 
correct solutions to (3.3) to O(E’), and furthermore, the numerical results of 0 4 are not 
significantly altered by using, for large z, an approximate expression in which the 
correct analytic form is displayed explicitly. (We are obliged to D J Wallace for this 
point .) 

Another limitation of our method is that it is not straightforward to include 
non-renormalizable interactions such as c$~ ,  although a calculation along the lines 
proposed by Wolsky (1974) might be possible, so that the region go<O, which is 
physically interesting applications, for example to collapsed polymers, and 3He-4He 
mixtures, is not accessible. 

4. Application to polymer chains 

We illustrate the use of the formalism developed in the last section, by calculating the 
expansion factor, a’, of a polymer in dilute solution. The statistics of a single polymer 
chain are described (de Gennes 1972, des Cloizeaux 1975, Burch and Moore 1976) by 
the Lagrangian (2.1) in the limit n + 0. An elegant proof of the connection has been 
given by Emery (1975). We assume that the- field-theoretic parameters are to be 
identified as follows 

where a is the length of a flexible unit of the chain, and 6 is the Flory temperature, at 
which the co_nfigurations of the chain assume a random walk distribution. The 
Propagator, G”’(R), is then the generating function of the distributions, CdR)’ 
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obtained from the inverse Laplace transform 

which represent the number of configurations of a chain of N links, whose end-to-end 
distance is R. If 

the mean square end-to-end distance is 

which can be evaluated using the results of the last section: 

( ~ 2 )  = Na2(1 + ~)(1 /4)+(15/128)~+(17/128)s ( l+f ) -~  

with 

(4.3) 

N €/2 

Z = %[ 1 - (e/ 293 (z) 
U* 

We have used the asymptotic expression, valid for large N €or the binomial coefficient 

This result coincides, to lowest order, with that obtained by Stephen (1975). In order to 
make a comparison with experiment, and with existing theories, we need to identify the 
variable %, commonly used in the polymer literature. The expansion of a* = (R2>/Nu2 
in powers of 3, given for example by Yamakawa (1971) is 

a 2 =  1 + ~ 3 + o ( e 2 )  
(4.4) 

in three dimensions, where p is the binary cluster integral, and is proportional to 
[l- (0/7')]. As anticipated earlier, it is by no means obvious how the E expansion result 
is to be interpreted. However, the result in perturbation theory, and the generalization 
Of (4.4) to 4 - E dimensions are respectively 

a2 = 1 + $ (47r)E/2S4u0[ 1 - (e/ 2-)](N/2d)'/2[E( 1 + 4 E)]-'  + O( U;) 

a2 = 1+(d/2.rra2)d~2pN'/22[E(1+~E)]-1+O(p2).  (4.6) 

(4.5) 

and 

Comparison of (4.4)-(4.6) suggests the identification 

1 
6e 

g = -(4T)"2s4u*z 
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and inserting this into (4.3) we obtain finally 

(4.7) 

~n the good solvent region, well above 6, that is, for large values of 9, the asymptotic 
form 

(R2)  - NZ” 
with v = 3/5, is in good agreement with experiment. This implies that 

012 - 3 2 1 5 .  

NOW (4.7) predicts for the exponent of % the values 0.25 and 0.37 at zeroth and first 
orders in E, and we observe, as is often the case, that the fist two terms of the E 

expansion converge towards thi  experimental data. In figure 4, we give a plot of a’@‘), 
and again a slow convergence is apparent, although the actual magnitude of CY’ at large 
3 does not agree well with the data. 

2 

Figure 4. Plot of (4.7) to zeroth (broken curve) and first (full curve) orders in E. Data 
points are taken from Berry (1966) and are for polystyrene in decalin. 
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